0=-16x^2+40x+72

Simple and best practice solution for 0=-16x^2+40x+72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+40x+72 equation:



0=-16x^2+40x+72
We move all terms to the left:
0-(-16x^2+40x+72)=0
We add all the numbers together, and all the variables
-(-16x^2+40x+72)=0
We get rid of parentheses
16x^2-40x-72=0
a = 16; b = -40; c = -72;
Δ = b2-4ac
Δ = -402-4·16·(-72)
Δ = 6208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6208}=\sqrt{64*97}=\sqrt{64}*\sqrt{97}=8\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{97}}{2*16}=\frac{40-8\sqrt{97}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{97}}{2*16}=\frac{40+8\sqrt{97}}{32} $

See similar equations:

| 3(z-4)+2(z+3)=9 | | x3=180 | | a+55+36=180 | | 65+2y-5=180 | | x^2-36^2=0 | | 4(z+3)=24 | | x+1312512351235=3 | | 4z+3=24 | | 4(3n+9)=34 | | 3(b-2)=12 | | 9x-2=2x^2-7 | | 4(x-7)-3x=x+2 | | 9(2y+3)=-16-5y | | -x^2+x+35=-x+20 | | A=8x^2+30x+28 | | 5x-10=-4+(-1) | | 6y-12=23 | | 5(3a-3)=3(a-19) | | 5(3a-3)=3(a-19 | | x+7=2x=8 | | (3x-2)*5=12x-x | | 3/4x+6=22 | | 5x-60=4x+12 | | 3-x/4=2x-9 | | 3x+12+5-10x=10x-24 | | 4b+8=25 | | 2x-9=12-x/2 | | 4*(x+1)-9=(x+3)*(x-3)-4 | | -2.30-0.60y=14 | | -45x-13=-13=77+90 | | 3x-45=9x+33 | | 4m+8m+8=108 |

Equations solver categories